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This paper describes a method for optimally designing a structure to &&best "t'' a speci"ed
set of acoustic characteristics, e.g., sound spectrum or radiated power. The method links the
disciplines of structural dynamics, acoustics and optimization into a uni"ed methodology.
The design variables include, for example, the addition of masses or multiply-tuned
resonators to the structure as well as distributions of sti!eners or constrained damping
layers. In all cases, the design variables are introduced as external forces (via their
impedances) in the equation for the structure that is given as a series expansion of eigen
functions. This step eliminates the need for solution of large matrix eigenvalue problems. An
acoustic program POWER is used to assess the radiated sound power as a function of the
design variables. Various search engines are used within the computer program MATLAB'

to determine which design variables give the &best "t' to the acoustic speci"cations. To
illustrate the design method, a wine glass is tuned optimally to move the "rst four
eigenvalues into harmonic relationships. The design variables are small masses that are
added to the upper surface of the wine glass. Comparison of the wine glass's radiated sound
power with and without the optimal masses indicates an excellent agreement between the
speci"ed and measured spectra.
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1. INTRODUCTION

Through the years, the Journal of Sound and Vibration (JSV) has provided the sound and
vibration research community with an excellent compendium of articles focused mainly on
advancing the understanding of sound and vibration in terms of generation, propagation
and boundary interaction phenomena. Being widely interdisciplinary, the research reported
in the journal has spawned applications that are continually evolving, e.g., jet noise
suppressors, algorithms for active noise and vibration control, and machinery health
monitoring, to name but a few. Theories and their re"nements have evolved as well, and
many advances leading to commercially available software, e.g., "nite element analysis
(FEA) or boundary element method (BEM) programs, can be charted in a progression of
JSV publications. Samples of these papers are given in chronological order in references
[1}23]. Today, structural/acoustical designers bene"t enormously from these earlier papers
and are presently re"ning the synthesis of the disciplines of acoustics, structural dynamics
and optimization into a uni"ed design methodology. This process is of course greatly
accelerated by the development of computer speed, memory and more recently, graphics
that allow nearly instant visualization of wave "elds within and surrounding complex
structures.
0022-460X/01/040665#14 $35.00/0 ( 2001 Academic Press
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The design strategy outlined in this paper builds on much of the work reported in those
earlier JSV publications. It describes a method for designing acoustically tailored structures
and illustrates how available computational and experimental tools may be integrated into
a uni"ed design methodology. For illustration purposes, a simple wine glass is used as the
structure to tailor acoustically. Speci"cally, its sound spectrum is altered to produce a series
of musical tones that are related harmonically rather than atonally, the latter resulting from
solutions of fourth order di!erential equations governing the vibration response of glass
rather than second order ones common to most musical instruments. The tailoring is
accomplished by adding a series of selected masses to the glass at speci"c points, a process
that requires an optimal search routine. The paper will take the reader through a series of
steps leading to the optimal solution. First, a description of how the design variables are
incorporated into the governing equations of the structure is given. Next, a brief description
of the method of wave superposition that is used to compute radiated acoustic power is
presented, followed by the optimization method used in the search routine. The paper
concludes with a description of the experiment and results.

2. THE STRUCTURAL MODEL

A common goal for all optimization problems of this type is to construct
a structural/acoustical model that will accommodate changes in the design variables
without the need for solving large matrices for each iteration. Commonly, in FEM/BEM
optimization models, the design variables (e.g., masses or sti!nesses) are imbedded in
the matrices of the governing equations and thus "nding the optimum set of variables
in the search process requires that the entire matrices be solved repeatedly. On very
large structural/acoustical optimization problems, the programs become unwieldy,
computationally intensive and highly ine$cient. To circumvent this problem, it is expedient
to introduce the design variables in the form of external impedances containing terms of
mass, sti!ness and damping or combinations of these, e.g., tuned resonators (see, for
example, Constans et al. [24]). A modal description of the structural model nicely
accommodates this approach and thus its response can be given in terms of basis functions
(usually in the form of eigenvectors), resonance frequencies and damping coe$cients
subjected to exciting forces that also contain the impedance terms. If a physical model of the
structure exists, these basis functions can be obtained with modal analysis techniques.
However, for solely conceptual designs, numerical models provide good approximations of
these quantities although, the computed eigenvalues often have to be &&adjusted'' to "t those
of the eventual physical structure. It should be noted that, for modelling existing structures
with complex geometries, the eigenvectors obtained via simpli"ed numerical models form
a useful set of basic functions on which to construct the overall response, provided that their
boundary conditions are good approximations to the physical ones. To illustrate these
ideas, consider the following modal description of the response of a typical structure given
as
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numerator give the generalized forces and when combined with those in the denominator
are often referred to as the modal participation factor.

The impedance of the design variable can be distributed over a surface or it can be
applied at a point. For example, the impedance of a tuned absorber attached at position
x
c
is

Z(x
c
)"iuk(1#ig)/Mk(1#ig)!mu2N , (2)

where k, m and g denote sti!ness, mass and loss factor respectively.
If the impedance is distributed over an area as in the case of a sti!ener or a constrained
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of points where the impedance is joined to the structure.
It should be noted that in the above formulation, the resonance frequencies of the

optimized structure are in#uenced by the impedances within the generalized force terms and
thus di!er from the damped modal frequencies. The above modal formulation gives the
vibration response for any linear structural system subjected to external forces. In the
following section, it is shown how the system response is combined with a solution to the
wave equation to quantify its radiated sound power at any frequency.

3. THE ACOUSTIC RADIATION MODEL

In most acoustic tailoring studies, the overall quantity to be minimized is the radiated
sound power over a speci"ed bandwidth. To compute this quantity, we have developed the
numerical program POWER based on the principle of superposition. Since the details of
this program have already been published extensively (see Koopmann and Fahnline [25]),
only an outline will be given of the steps that lead to a relation between the velocity
response of a vibrating structure and its radiated sound power. It begins with a variation of
the Kirchho!}Helmholtz equation that uses a Green function of the second kind (rather
than the more common free-space version) with the property that $
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where p (x) is the pressure at the "eld point x (outside the boundary surface), i is the acoustic
wave number and oc is the characteristic acoustic impedance. The integration is taken over
the radiating surface S with the integrand given as the product of the Green function G and
the normal velocity of the surface m (x

s
) ) n

s
. This reduced form of the Kirchho!}Helmholtz

equation is useful for deriving a lumped parameter radiation model because the scattering
from the boundary surface is included in the de"nition of the Green function. To express
this equation in a lumped element form (see illustration of wine glass in Figure 1), the
boundary surface is divided into N elemental surfaces of area Sk , each having a volume
velocity u

v
. The space-average pressure on the element k is
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Figure. 1. Lumped element representation of wine glass surface.
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With these approximations, the space-average pressure on element k can be written as
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Taking the radiation impedance Zkv to be the ratio of the space-average pressure on
element k to the volume velocity source of element v, then
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The matrix Zkv for the wine glass geometry used in this paper is shown in Figure 1.
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The time-average sound power radiated by a structure is
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with R
0
"i2oC/4n. The computer program POWER is used to compute the integrals of

the Green function over the elemental surfaces Sk and S
v
. POWER is an equivalent source

method based on the lumped parameter model that uses volume velocity matching as
a means of satisfying the boundary conditions on the surface of a radiating structure.
Combinations of simple, dipole and tripole sources on each of the elemental surfaces of
a structure generate volume velocities on each of those surfaces that are equivalent to the
speci"ed boundary condition. In turn, the strengths of these sources are used to calculate
the space-average pressure on each elemental surface. For example, to generate R

v1
, the "rst

column of the resistance matrix, the volume velocity u
1

is unity and the volume velocity of
the remaining surfaces is zero. Solution of the corresponding matrix equation yields simple,
dipole and tripole source strengths that satisfy this boundary condition and are used to
calculate the space-averaged surface pressure at each of the surfaces, pk. A plot of the "rst
column of the acoustic resistance matrix corresponding to the location of the volume
velocity source given in Figure 1 is shown in Figure 2. The full resistance matrix is
computed by iterating through all the elemental surface volume velocities in this manner. It
should be noted that Rkv only depends on the frequency (wavelength) of the radiated sound
and the geometry of the vibrating structure. Once the velocity of the structure is available,
(e.g., that given by equation (1)), the average power output is computed by carrying out
a straightforward operation of pre- and post-multiplying the Rkl matrix with the volume
velocity vectors u*k and u

v
. The ability to compute sound power directly without a matrix

inversion makes the computational steps within the optimization search highly e$cient.
However, each term in the resistance matrix is frequency dependent, and thus must be
evaluated over the bandwidth required in the optimization. Since the resistance terms are
slowly varying with frequency, it is possible to reduce this computation e!ort by
spline-"tting a coarse set of points within the frequency band to provide a resistance term at
each frequency. In practice, the terms Rkv(u) are computed and stored prior to the
optimization process and recalled only when required. The "nal step in an optimal acoustic
design process is to combine the above structural and acoustical models with an
optimization search routine as given in Section 3.

4. THE OPTIMIZATION STRATEGY

All optimization searches include an objective (or cost) function to be minimized (or
maximized) that contains a series of design variables that can be changed subject to a set of



Figure 2. Plot of the "rst column of the acoustic resistance matrix corresponding to the location of the volume
velocity source given in Figure 1.
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design constraints that limit the domain of the search. The objective constraint functions
must be formulated in mathematical terms to "t the particular search algorithms. These
may contain multi-variables often with higher order, non-linear relations and thus,
a speci"c optimization strategy is needed for each problem considered. To illustrate the
strategy for optimal acoustic design, recall the expression for the modal response of the
structure given in equation (1). The velocity v(x

r
) is required to compute radiated sound

power. Each such computation for v(x
r
) in the optimization search begins with selecting

a set of trial design variables (e.g., a set of c impedances, Z (x
c
)) so that the unknown

velocities v(x
c
) that appear on the right side of equation (1) can be solved for explicitly. This

initial calculation thus requires a set of c equations to be solved simultaneously for the
v(x

c
)'s. For example, with two absorbers with impedances Z(x

1
) and Z (x

2
), the velocity

analysis proceeds as follows: the "rst equation in the set would have the form
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The second equation for v(x
2
) would have a similar form. These equations are then solved

simultaneously for the velocities at the absorber locations, v (x
1
) and v (x

2
). In general, with

the v(x
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)'s in hand, they are incorporated into equation (1) which gives the surface velocity
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over all elemental surfaces of the radiating structure, the sound power corresponding to
each set of design variables can be calculated as
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This expression for sound power is one form of the objective function used in optimal
acoustic design. The choice of search algorithms used for the optimization depends heavily
on the number of design variables and their characteristics, e.g., whether locations of the
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absorbers are to be considered as design variables along with the absorber parameters, and
whether the objective function is non-convex with several peaks and valleys. In optimal
acoustic design, a hybrid strategy is employed where a gradient-based algorithm is used to
select the design variables of a localized impedance while a simulated annealing algorithm is
used to optimize their locations on the radiating structure. The concomitant constraint
equations place limits on the design variables. For example, if Z(x

c
) represents a tuned

absorber, its allowable weight, size, and loss factor would have a speci"ed upper limit. For
more commercially oriented applications, additional constraint equations may link cost,
aesthetics, reliability, etc., in mathematical terms that can be addressed in the search routine.

5. AN APPLICATION OF AN OPTIMAL ACOUSTIC DESIGN

An example is now given to illustrate the steps required for optimal acoustic design. The
modal response of a wine glass will be examined experimentally and its spectrum
acoustically tailored by adding small masses to its surface, i.e., the design variables. The
objective function is a set of preferred resonance frequencies (harmonically related) within
its frequency response that must be met within a given error band. The constraint equation
simply places a limit on the total weight of the all allowable added masses. The block
diagram in Figure 3 illustrates the logic #ow of the search routine.

The wine glass used in this experiment is shown in Figure 4 along with the laser
vibrometer. The glass is excited with a small piezoceramic (PZT) layer bonded near its rim.
A high-voltage ampli"er drives the PZT with a signal from a real-time analyzer. The
response of the glass is recorded with a laser vibrometer that senses velocity. Since the glass
is axisymmetric, a complete velocity response can be synthesized from measurements taken
around its rim and vertically along a plane coincident with the PZT exciter. Re#ecting tape
is attached on these surfaces to enhance the laser signal. To obtain the terms required to
generate equation (1) analytically, i.e., u

n
, u

dn
and g

n
, a modal analysis was performed on

the glass using the quadrature method. A typical mobility response function is shown in
Figure 5 and includes the "rst eight modal frequencies (note the light modal damping,
g&0.001). To obtain the excellent agreement between theory and experiment, it was
necessary to use the method of added residuals to compensate for the errors introduced in
truncating the series expansion. At each frequency, the mode shapes were obtained by
rotating the glass in small increments (at least six measurement points/structural
wavelength) and by recording the velocity response. Similar measurements were taken in
the vertical direction. Care was taken to record the normal surface velocity by adjusting the
laser beam accordingly since this is the form of surface velocity required in the sound power
calculation. Typical modal frequencies and shapes are shown in Figure 6. Note that most of
the vibration response takes place near the upper part of the glass and that the modes are
purely circumferential occurring in n multiples of structural wavelengths beginning with
n"2. It should also be noted that each of the modes has a corresponding degenerate mode
occurring in spatial quadrature, but these are weakly excited due to the small size of the
PZT patch. With the terms u

n
, u

dn
and g

n
in hand from the measurements, the surface

velocity of the glass v(x
r
) was synthesized using equation (1) and the corresponding radiated

sound power was computed for each mode using the numerical program POWER. Figure 7
shows the relative sound powers of the "rst four modes of the glass.

Attention is now given to the optimization part of the experiment. The objective function
is de"ned in terms of a prescribed power spectrum shown in Figure 8. The dominant
components in the spectrum are prescribed in terms of multiples of the fundamental
frequency f

1
of the glass. Thus, when tapped, the glass will produce musical sounds that are



Figure 3. Logic #ow of search routine for selecting optimal size and position of tuning mass.
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predominantly harmonic in character. Error bands of $2% provide a criterion for
deciding when the optimal search can be concluded. In this experiment, the design variables
are the placement and size of n small masses and thus the impedance given in equation (1) is
simply Z(x

c
)"ium (x

c
), where m(x

c
) denotes the size and placement of the mass at point x

c
.

The constraint placed on these design variables is a limit on allowable total mass, M.
Mathematically, the optimization procedure can be written as

Design variables: masses m
c
and their placement (x

c
)

Objective function: D ( f opt
n

!nf opt
1

)/nf opt
1

D)2% n"2, 4 and 6.

Constraint equations: +C
c
m

C
)M. For this study, M"10 g.



Figure 4. (a) View of wine glass showing PZT layer and laser vibrometer; (b) View of wine glass showing typical
locations of added masses.
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The search process follows the logic #ow given in Figure 3. The program begins with
a trial set of three masses at three locations, say, m(x

1
)Pm (x

3
). Using a routine MATLAB'

program, these impedances are then inserted into equation (11) and the corresponding set of
(3]3) equations is solved for the surface velocities v(x

c
) at the points where the masses are

applied. These velocities are then used in equation (1) to compute the surface velocities v(x
r
)

at all grid points on the glass. After converting these into volume velocities uk, the sound
power spectrum P(u) is computed via the resistance matrix Rkv provided by the program
POWER given in equation (12). With the spectrum in hand, a second MATLAB' program
extracts the peaks of the computed spectrum f opt

n
and compares these with those prescribed

nfopt
1

. If the di!erence is greater than the allowable error of 2%, then the search for the
optimal placement and size of the masses continues. The search process is carried out with
a third MATLAB' program that runs two search engines simultaneously. The gradient
method is used for searching the optimal mass sizes while a simulated annealing method is



Figure 5. Magnitude and phase plot of point mobility function; experimental (**), theory (- - - - -).

Figure 6. Typical modal frequencies and mode shapes of the wine glass.
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Figure 7. Relative sound powers of the "rst four modes of the wine glass.

Figure 8. Sound power spectrum before (} }} } }) and after (**) optimal tuning of glass with added masses.
nf

1
(n"2, 4, and 6) gives the objective function.
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used to optimize the mass placements. As these optimization techniques are well known, we
will not elaborate on them. The recent book by Belegundu and Chandrupatla [26] contains
several algorithms with source code programs. When the objective function is "nally met,
the search ends with a prescription of the optimal size and placement of the masses on the
wine glass.

6. DESIGN VALIDATION

Optimal acoustic design studies are generally a part of an overall design process where
the structure is modelled entirely at the virtual level. Designers rely more and more on such
numerical models to provide a basis for decision making, e.g., whether or not to proceed
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with particular design features that must meet certain mechanical, electrical and acoustical
requirements. However, if a validation of the acoustic optimization model is required along
the way, it is of course necessary to construct a physical model for an experiment. This study
began with a physical model, i.e., the wine glass, and thus it was possible to characterize its
dynamic properties (u

n
, u

dn
and g

n
) directly via experiments. To validate the optimization

procedure that speci"ed a set of masses in terms of their sizes and placements, the following
experiments were conducted. Based on the results of the optimization study, small masses
(&2}3 g) were bonded to the wine glass at the prescribed points as shown in Figure 4(b). To
minimize exciting degenerate modes, the masses were placed symmetrically around the rim
of the glass relative to the location of the PZT layer. With the masses in place, the glass was
driven again with the same PZT layer and its sound power spectrum was measured, this
time in the far "eld of an anechoic chamber. Figure 8 gives the sound power spectrum of the
wine glass before and after its modal frequencies have been optimized to exhibit harmonic
relationships. (A direct computation of the radiated sound power was bypassed at this point
since the presence of the masses on the glass surface upsets the axisymmetry of its
circumferential modes thus necessitating a modal analysis of its entire surface.) It is
interesting to note that the introduction of the weights excites the degenerate modes
somewhat, even though care was taken to locate the weights symmetrically to the PZT
layer. This is particularly evident at the fourth mode (2784 Hz). For all practical purposes,
the design requirement has been met. Modes 2f

1
, 4f

1
and 6f

1
fall within the 2% error bands.

For example, the second modal frequency (944 Hz) is within 1.7% of the desired 2f
1

frequency (928 Hz). The next two higher harmonics are well within the 2% error band.
When tapped, the glass sounds distinctively musical and the predominance of the tone at
464 Hz and its octaves are quite pleasing to the ear. Thus, it can be concluded that both the
objective and subjective results of this simple experiment provide a validation point for the
method outlined in this paper for the optimal acoustic design of structures.

7. CONCLUSIONS

The method described in this paper, i.e., the optimal acoustic design of a structure, uses
the highly e$cient feature of introducing the design variables as external forces (via their
impedances) in the equation for the structure. This allows the structural response to be
written as a series expansion of basis functions that are independent of the design variables.
For each design iteration generated with the computer program MATLAB', the structural
response is linked with the computer program POWER to assess the corresponding
radiated sound spectrum. Various search algorithms are used within MATLAB' to
determine which design variables give the &&best "t'' to the acoustic speci"cations.
To illustrate the design method, a wine glass was tuned optimally to move the "rst
four eigenvalues into harmonic relationships. The design variables were small masses
that were added to the upper surface of the wine glass according to the results of the
optimization search. Comparison of the wine glass's sound power spectrum with
and without the optimally placed and sized masses indicated excellent agreement between
the speci"ed and measured spectra thereby providing a strong validation point for the
design method.

The subject of this paper seems particularly appropriate to pay special tribute to the
celebrated and recent octogenarian Philip Doak, Editor-in-Chief of the Journal of Sound
and Vibration, because of his enduring curiosity about the subtlety of musical sounds.
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